Engineering Services Exam (ESE) is one of the most coveted exams written by engineering students aspiring for reputed posts in the various departments of the Government of India. ESE is conducted by the Union Public Services Commission (UPSC), and therefore the standards to clear this exam too are very high. To clear the ESE, a candidate needs to clear three stages - ESE Prelims, ESE Mains and Personality Test.

It is not mere hard work that helps a student succeed in an examination like ESE that witnesses lakhs of aspirants competing neck to neck to move one step closer to their dream job. It is hard work along with smart work that allows an ESE aspirant to fulfil his dream.

After detailed interaction with students preparing for ESE, IES Master has come up with this book which is a one-stop solution for engineering students aspiring to crack this most prestigious engineering exam. The book includes previous years’ solved conventional questions segregated subject-wise along with detailed explanation. This book will also help ESE aspirants get an idea about the pattern and weightage of questions asked in ESE.

IES Master feels immense pride in bringing out this book with utmost care to build upon the exam preparedness of a student up to the UPSC standards. The credit for flawless preparation of this book goes to the entire team of IES Master Publication. Teachers, students, and professional engineers are welcome to share their suggestions to make this book more valuable.

IES Master Publication
New Delhi
1. CIRCUIT THEORY .. 01 – 161
2. ELECTRO MAGNETIC FIELD THEORY .. 162 – 285
3. ELECTRICAL MATERIALS .. 286 – 385
4. ELECTRICAL AND ELECTRONICS MEASUREMENTS 386 – 551
5. ENGINEERING MATHEMATICS ... 552 – 570
6. COMPUTER FUNDAMENTALS ... 571 – 585
SYLLABUS

CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Network Elements</td>
<td>02-33</td>
</tr>
<tr>
<td>2.</td>
<td>Transient and Steady State Response</td>
<td>34-62</td>
</tr>
<tr>
<td>3.</td>
<td>Resonance</td>
<td>63-71</td>
</tr>
<tr>
<td>4.</td>
<td>Network Theorems</td>
<td>72-95</td>
</tr>
<tr>
<td>5.</td>
<td>Two-Port Network</td>
<td>96-121</td>
</tr>
<tr>
<td>6.</td>
<td>Network Functions</td>
<td>122-138</td>
</tr>
<tr>
<td>7.</td>
<td>Network Synthesis</td>
<td>139-151</td>
</tr>
<tr>
<td>8.</td>
<td>3-Phase Circuits, Network Graphs and Filters</td>
<td>152-161</td>
</tr>
</tbody>
</table>
Q–1: Define precisely unit step and unit impulse functions. [8 Marks ESE–1987]

Sol. Unit Step Function: Unit step function is defined as

\[u(t) = \begin{cases}
0 & ; \ t < 0 \\
1 & ; \ t > 0
\end{cases} \]

Note: Unit step function is discontinuous at \(t = 0 \)

Unit impulse function: Unit impulse function is defined as

\[\delta(t) = \begin{cases}
0 & ; \ t \neq 0 \\
\infty & ; \ t = 0
\end{cases} \]

Note: The area of the unit impulse signal is 1

\[\int_{-\infty}^{\infty} \delta(t) \, dt = 1 \]

The continuous-time unit step is the running integral of the unit impulse

\[u(t) = \int_{-\infty}^{t} \delta(\tau) \, d\tau \]

\[\Rightarrow \delta(t) = \frac{du(t)}{dt} \]

i.e. unit impulse is the running derivative of the unit step function.

Q–2: Sketch the following function from \(t = 0 \) to \(t = 10 \) units, indicating all salient values at different times

\[50(1-\frac{1}{2} t[u(t)-u(t-4)]) \] [12 Marks ESE–1987]
Q-3: Unit Step and Unit Impulse Functions. [3 Marks ESE–1989]

Sol. Unit Step Function: Unit step function is defined as

\[u(t) = \begin{cases}
0 & ; t < 0 \\
1 & ; t > 0
\end{cases} \]

\[f(t) = 50\left[1 - \frac{1}{2}t(u(t) - u(t-4))\right] = 50 - 25t(u(t) - u(t-4)) \]

The graphs of function at different stages are shown below.

Let
\[f_1(t) = u(t) - u(t-4) \]
\[f_2(t) = 25t(u(t) - u(t-4)) \]
\[f(t) = 50 - f_2(t) \]

\[f_2(t) = 25t(u(t) - u(t-4)) \]
Circuit Theory

Note: Unit step function is discontinuous at $t = 0$

Unit impulse function: Unit impulse function is defined as
\[
\delta(t) = \begin{cases}
0 & ; \ t \neq 0 \\
\infty & ; \ t = 0
\end{cases}
\]

Note: The area of the unit impulse signal is 1
\[
\int_{-\infty}^{\infty} \delta(t) \, dt = 1
\]

The continuous-time unit step is the running integral of the unit impulse
\[
u(t) = \int_{-\infty}^{t} \delta(\tau) \, d\tau
\]
\[
\Rightarrow \quad \delta(t) = \frac{du(t)}{dt}
\]
i.e. Unit impulse is the running derivative of the Unit Step Function.

Q–4: Considering $i(t)$ as input and $v(t)$ as output in the network shown in Fig., find unit step response and the unit ramp response with $v(0) = 0$.

![Diagram of network](image)

Sol.

Applying KCL at node P
\[
I(s) = \frac{V(s)}{2} + \frac{V(s)}{1/s} = V(s)[s + 0.5]
\]
\[
\Rightarrow \quad V(s) = \frac{I(s)}{s + 0.5}
\]
For unit step input current
\[
I(s) = \frac{1}{s}
\]
\[
\Rightarrow \quad V(s) = \frac{1}{s(s + 0.5)} = 2 \left[\frac{1}{s} - \frac{1}{s + 0.5} \right]
\]
Taking inverse a laplace
\[
v(t) = L^{-1}[V(s)] = 2\left[1 - e^{-0.5t} \right]u(t)
\]
For unit ramp input current
\[
I(s) = \frac{1}{s^2}
\]
Pocket the Knowledge

As a maverick ESE/GATE platform, we embark upon being your learning partner, in your pursuit of excellence.

True to the likings of engineering students, here, information comes crisp, compact and exact, accompanied by myriad of illustrations that one’s eyes can feast upon, and brain to exercise and hone its capabilities. We believe that illustrations speak louder than words; and figurines communicate faster than complex wordy pages.

As your eyeballs roll through the app, concepts on all topics – from Material Science to Currents, right from the ESE and GATE toppers - shall come alive before you.

In the swarm of devices based on touch-based, smart technology, IES Master App literally manifests its belief that a right ‘touch’ can change one’s world.

Features

- Daily updates
- Timely notifications
- On the fly bookmark of important notes and questions
- Practice questions on all topics
- Study materials - in the form of notes, quizzes and videos

Also visit @
iesmaster.org | iesmasterpublications.com

IES MASTER PUBLICATION
F-126 (Lower Basement), Katwaria Sarai, New Delhi-110016
Phone : 011 26522064, Mobile : 97 1185 3908
E-mail : info.publications@iesmaster.org, info@iesmaster.org
Web : iesmasterpublications.com

ISBN 978-81-8086-569-9

650.00