The Graduate Aptitude Test in Engineering (GATE) is an All-India examination administered and conducted in eight zones across the country by the GATE Committee comprising of Faculty members from IISc, Bangalore and other seven IITs on behalf of the National Coordinating Board, Department of Education, Ministry of Human Resources Development.

The GATE score/rank is used for admissions to Post Graduate Programmes (ME, M.Tech, MS, direct PhD) in institutes like IIT and IISc, etc. with financial assistance offered by the Ministry of Human Resource Development. PSUs too use the GATE scores for recruiting candidates for various prestigious jobs with attractive remuneration.

The door to GATE exam is through previous year question papers. If you are able to solve question papers in access of 10 years, you are sure to clear the GATE exam, and open new vistas of career and learning.

The Electronics & Communication Engineering GATE 2020 book from IES Master offers detailed topic-wise solutions for the past 33 years question papers. The emphasis is clearly on the understanding of concepts and building upon a holistic picture. So as you finish a topic, for instance, Basics of Network Analysis, you will find all the previous years’ question papers with detailed explanation under that particular topic.

The approach has been to provide explanation in such a way that just by going through the solutions, students will be able to understand the basic concepts and will apply these concepts in solving other questions that might be asked in future exams.

Every care has been taken to bring an error-free book. However, comments, suggestions, and feedback for improvement in the future editions are most welcome.

IES Master Publication
New Delhi
<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Network Theory</td>
<td>1 – 113</td>
</tr>
<tr>
<td>2</td>
<td>Signal and Systems</td>
<td>114 – 209</td>
</tr>
<tr>
<td>3</td>
<td>Electronic Devices</td>
<td>210 – 283</td>
</tr>
<tr>
<td>4</td>
<td>Analog Electronics</td>
<td>284 – 407</td>
</tr>
<tr>
<td>5</td>
<td>Digital Circuits</td>
<td>408 – 505</td>
</tr>
<tr>
<td>6</td>
<td>Microprocessor</td>
<td>506 – 529</td>
</tr>
<tr>
<td>7</td>
<td>Control Systems</td>
<td>530 – 643</td>
</tr>
<tr>
<td>8</td>
<td>Communications</td>
<td>644 – 767</td>
</tr>
<tr>
<td>9</td>
<td>Electromagnetics</td>
<td>768 – 891</td>
</tr>
<tr>
<td>10</td>
<td>Mathematics</td>
<td>892 – 951</td>
</tr>
<tr>
<td>11</td>
<td>General Aptitude</td>
<td>952 – 989</td>
</tr>
</tbody>
</table>
IES MASTER
Institute for Engineers (IES/GATE/PSUs)

Genius Batch
for ESE GATE PSUs
SESSION 2019-20
A Classroom Program for SMART LEARNERS

- Uniform and collective progress
- Get the rub-off with the best engineering minds
- Focus on concepts and problem solving
- Regular practice tests
- Classes by highly experienced faculty

Batches start on
24th May (Morning)
14th June (Evening)

Call 97118 53908, 80100 09955
APPLY ONLINE
UNIT-1 NETWORK THEORY

SYLLABUS
Network solution methods: nodal and mesh analysis; Network theorem; superposition, Thevenin and Norton’s, maximum power transfer; Wye-Delta transformation; Steady state sinusoidal analysis using phasors; Time domain analysis of simple linear circuits; solution of network equations using Laplace transform; Frequency domain analysis of RLC circuits; Linear 2-port network parameters: driving point and transfer functions; State equations for network

CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Basics of Network Analysis</td>
<td>01–22</td>
</tr>
<tr>
<td>2.</td>
<td>DC Transients and Steady State Response</td>
<td>23–63</td>
</tr>
<tr>
<td>3.</td>
<td>Resonance</td>
<td>64–71</td>
</tr>
<tr>
<td>4.</td>
<td>Network Theorems</td>
<td>72–89</td>
</tr>
<tr>
<td>5.</td>
<td>Two Port Networks</td>
<td>90–105</td>
</tr>
<tr>
<td>6.</td>
<td>Network Functions and Network Synthesis</td>
<td>106–110</td>
</tr>
<tr>
<td>7.</td>
<td>Network Graphs</td>
<td>111–113</td>
</tr>
</tbody>
</table>
1. A connection is made consisting of resistance A in series with a parallel combination of resistances B and C. Three resistors of the value 10Ω, 5Ω, 2Ω are provided. Consider all possible permutations of the given resistors into the positions A, B, C, and identify the configurations with maximum possible overall resistance, and also the ones with minimum possible overall resistance. The ratio of maximum to minimum value of the resistances (upto second decimal place) is __________

2. In the network shown in the figure, all resistors are identical with $R = 300\Omega$. The resistance R_{ab} (in Ω) of the network is ______.

3. In the given circuit, the values of V_1 and V_2 respectively are

 (a) 5V, 25V
 (b) 10V, 30V
 (c) 15V, 35V
 (d) 0V, 20V

4. In the circuit shown, the switch SW is thrown from position A to position B at time $t = 0$. The energy (in μJ) taken from the 3V source to charge the 0.1 μF capacitor from 0V to 3V is

 (a) 0.3
 (b) 0.45
 (c) 0.9
 (d) 3

5. In the circuit shown, the average value of the voltage V_{ab} (in Volts) in steady state condition is

6. At very high frequencies, the peak output voltage V_0 (in Volts) is

7. In the circuit shown, the voltage V_x (in Volts) is
8. The magnitude of current (in mA) through the resistor R₂ in the figure shown is ____.

![Resistor Circuit Diagram]

[GATE-2014]

9. Consider the configuration in the figure which is a portion of a larger electrical network.

![Current Configuration Diagram]

For R = 1Ω and currents i₁ = 2A, i₄ = 1A, i₅ = 4A, which one of the following is TRUE?
(a) i₆ = 5 A
(b) i₃ = 4A
(c) Data is sufficient to conclude that the supposed currents are impossible.
(d) Data is insufficient to identify the currents i₂, i₃, and i₆.

[GATE-2014]

10. In the figure shown, the value of the current I (in Amperes) is ______.

![Current Figure Diagram]

[GATE-2014]

11. The circuit shown in the figure represents a

(a) voltage controlled voltage source
(b) voltage controlled current source
(c) current controlled current source
(d) current controlled voltage source

[GATE-2014]

12. Consider a delta connection of resistors and its equivalent star connection as shown below. If all elements of the delta connection are scaled by a factor k, k > 0, the elements of the corresponding star equivalent will be scaled by a factor of

(a) k²
(b) k
(c) 1/k
(d) \(\sqrt{k}\)

[GATE-2013]

13. The average power delivered to an impedance \((4 – j3)Ω\) by a current \(5\cos(100\pi t + 100)\) is
(a) 44.2 W
(b) 50 W
(c) 62.5 W
(d) 125 W

[GATE-2012]

14. The impedance looking into nodes 1 and 2 in the given circuit is

![Impedance Circuit Diagram]

(a) 50Ω
(b) 100Ω
(c) 5Ω
(d) 10.1kΩ

[GATE-2012]

15. A fully charged mobile phone with a 12 V battery is good for a 10 minute talk-time. Assume that, during the talk-time, the battery delivers a constant current of a 2 A and its voltage drops linearly from 12 V to 10 V as shown in the figure. How much energy does the battery deliver during this talk-time?

![Battery Energy Figure]

(a) 220 J
(b) 12 kJ
(c) 13.2 kJ
(d) 14.4 kJ

[GATE-2009]
3– Marks

1. In the circuit shown, the current i_D through the ideal diode (zero cut in voltage and zero forward resistance) equals

![Circuit Diagram]

(a) –105 V
(b) +105 V
(c) –15 V
(d) +15 V

[GATE-1993]

5– Marks

1. Find the input resistance R_{in} of the infinite section resistive network shown in figure.

![Resistive Network Diagram]

[GATE-1996]
Pocket the Knowledge

As a maverick ESE/GATE platform, we embark upon being your learning partner, in your pursuit of excellence.

True to the likings of engineering students, here, information comes crisp, compact and exact, accompanied by myriad of illustrations that one's eyes can feast upon, and brain to exercise and hone its capabilities. We believe that illustrations speak louder than words; and figurines communicate faster than complex wordy pages.

As your eyeballs roll through the app, concepts on all topics – from Material Science to Currents, right from the ESE and GATE toppers - shall come alive before you.

In the swarm of devices based on touch-based, smart technology, IES Master App literally manifests its belief that a right 'touch' can change one's world.

Features

- Daily updates
- Timely notifications
- On the fly bookmark of important notes and questions
- Practice questions on all topics
- Study materials - in the form of notes, quizzes and videos

Also visit @ iesmaster.org | iesmasterpublications.com

Like us on facebook /iesmaster01
Follow us on twitter /ies_master
Watch us on youtube /iesmaster01

Buy Online @
amazon.com
Flipkart
snapdeal

https://iesmasterpublications.com

IES MASTER PUBLICATION
F-126 (Lower Basement), Katvaria Sarai, New Delhi-110016
Phone: 011 26522064, Mobile: 97 1185 3908
E-mail: info.publications@iesmaster.org, info@iesmaster.org
Web: iesmasterpublications.com