GATE SOLUTIONS
CIVIL ENGINEERING

1987-2019

IES MASTER PUBLICATION

Office: F-126, (Lower Basement), Katwaria Sarai, New Delhi-110 016
Phone: 011-26522064 • Mobile: 81309 09220, 97118 53908
Email: info.publications@iesmaster.org, info@iesmaster.org
Web: iesmasterpublications.com, iesmaster.org
The Graduate Aptitude Test in Engineering (GATE) is an All-India examination administered and conducted in eight zones across the country by the GATE Committee comprising of Faculty members from IISc, Bangalore and other seven IITs on behalf of the National Coordinating Board, Department of Education, Ministry of Human Resources Development.

The GATE score/rank is used for admissions to Post Graduate Programmes (ME, M.Tech, MS, direct PhD) in institutes like IIT and IISc, etc. with financial assistance offered by the Ministry of Human Resource Development. PSUs too use the GATE scores for recruiting candidates for various prestigious jobs with attractive remuneration.

The door to GATE exam is through previous year question papers. If you are able to solve question papers in access of 10 years, you are sure to clear the GATE exam, and open new vistas of career and learning.

The Civil Engineering GATE 2020 book from IES Master offers detailed topic-wise solutions for the past 33 years question papers. The emphasis is clearly on the understanding of concepts and building upon a holistic picture. So as you finish a topic, for instance, Strength of Materials, you will find all the previous years’ question papers with detailed explanation under that particular topic.

The approach has been to provide explanation in such a way that just by going through the solutions, students will be able to understand the basic concepts and will apply these concepts in solving other questions that might be asked in future exams.

Every care has been taken to bring an error-free book. However, comments, suggestions, and feedback for improvement in the future editions are most welcome.

IES Master Publication
New Delhi
IES MASTER
Institute for Engineers (IES/GATE/PSUs)

Genius Batch
for ESE GATE PSUs
SESSION 2019-20
A Classroom Program for SMART LEARNERS

- Uniform and collective progress
- Get the rub-off with the best engineering minds
- Focus on concepts and problem solving
- Regular practice tests
- Classes by highly experienced faculty

Batches start on
24th May (Morning)
14th June (Evening)

Call 97118 53908, 80100 09955
APPLY ONLINE
<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Mechanics</td>
<td>01–03</td>
</tr>
<tr>
<td>2</td>
<td>Strength of Materials</td>
<td>04–74</td>
</tr>
<tr>
<td>3</td>
<td>Structural Analysis</td>
<td>75–144</td>
</tr>
<tr>
<td>4</td>
<td>Construction Materials and Management</td>
<td>145–150</td>
</tr>
<tr>
<td>5</td>
<td>RCC Structure and Pre-Stress Concrete</td>
<td>151–215</td>
</tr>
<tr>
<td>6</td>
<td>Design of Steel Structure</td>
<td>216–265</td>
</tr>
<tr>
<td>7</td>
<td>Soil Mechanics</td>
<td>266–424</td>
</tr>
<tr>
<td>8</td>
<td>Fluid Mechanics</td>
<td>425–529</td>
</tr>
<tr>
<td>9</td>
<td>Engineering Hydrology</td>
<td>530–563</td>
</tr>
<tr>
<td>10</td>
<td>Irrigation Engineering</td>
<td>564–588</td>
</tr>
<tr>
<td>11</td>
<td>Environmental Engineering</td>
<td>589–672</td>
</tr>
<tr>
<td>12</td>
<td>Transportation Engineering</td>
<td>673–744</td>
</tr>
<tr>
<td>13</td>
<td>Geomatics Engineering</td>
<td>745–772</td>
</tr>
<tr>
<td>14</td>
<td>Engineering Mathematics</td>
<td>773–850</td>
</tr>
<tr>
<td>15</td>
<td>General Aptitude</td>
<td>851–872</td>
</tr>
<tr>
<td>16</td>
<td>English</td>
<td>873–881</td>
</tr>
</tbody>
</table>
UNIT-1 ENGINEERING MECHANICS

SYLLABUS
System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Friction and its applications; Kinematics of point mass and rigid body; Centre of mass; Euler’s equations of motion; Impulse-momentum; Energy methods; Principles of virtual work.

CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Mechanics</td>
<td>01-03</td>
</tr>
</tbody>
</table>
1– Mark

1. A simple mass-spring oscillatory system consists of a mass \(m \), suspended from a spring of stiffness \(k \). Considering \(z \) as the displacement of the system at any time \(t \), the equation of motion for the free vibration of the system is \(m \ddot{z} + kz = 0 \). The natural frequency of the system is

(a) \(\sqrt{\frac{k}{m}} \)
(b) \(\sqrt{\frac{m}{k}} \)
(c) \(\frac{k}{m} \)
(d) \(\frac{m}{k} \)

[GA\-TE-2019 SHIFT-I]

2. An assembly made of a rigid arm A-B-C at end A and supported by an elastic rope C-D at end C is shown in the figure. The members may be assumed to be weightless and the lengths of the respective members are as shown in the figure.

Under the action of a concentrated load \(P \) at C as shown, the magnitude of tension developed in the rope is

(a) \(\frac{3P}{\sqrt{2}} \)
(b) \(\frac{P}{\sqrt{2}} \)
(c) \(\frac{3P}{8} \)
(d) \(\sqrt{2P} \)

[GA\-TE-2016 SHIFT-II]

2– Marks

3. A cylinder of radius 250 mm and weight, \(W = 10 \) kN is rolled up an obstacle of height 50 mm by applying a horizontal force \(P \) at its centre as shown in the figure.

All interfaces are assumed frictionless. The minimum value of \(P \) is

(a) 4.5 kN
(b) 5.0 kN
(c) 6.0 kN
(d) 7.5 kN

[GA\-TE-2018 SHIFT-I]

4. Two rigid bodies of mass 5 kg and 4 kg are at rest on a frictionless surface until acted upon by a force of 36 N as shown in the figure. The contact force generated between the two bodies is

(a) 4.0 N
(b) 7.2 N
(c) 9.0 N
(d) 16.0 N

[GA\-TE-2018 SHIFT-II]

5. A particle of mass 2 kg is travelling at a velocity of 1.5 m/s. A force \(f(t) = 3t^2 \) (in N) is applied to it in the direction of motion for a duration of 2 seconds. Where \(t \) denotes time in seconds. The velocity (in m/s up to one decimal place) of the particle immediately after the removal of the force is ______.

[GA\-TE-2017 SHIFT-I]
EXPLANATIONS

1– Mark

1. (a) For simple harmonic motion

\[m\ddot{z} + kz = 0 \]
\[\ddot{z} + \frac{k}{m} z = 0 \]

Standard equation is

\[\frac{d^2x}{dt^2} + \omega^2 x = 0 \]

\[\Rightarrow \omega^2 = \frac{k}{m} \]
\[\Rightarrow \omega = \sqrt{\frac{k}{m}} \]

2. (b) Taking moment about A

\[PL = \frac{T}{\sqrt{2}} L + \frac{T}{\sqrt{2}} L \Rightarrow \sqrt{2} T = P \]
\[\Rightarrow T = \frac{P}{\sqrt{2}} \]

2– Marks

3. (d) For rolling, the normal reaction should be zero when the cylinder just starts to roll.

\[\Sigma M_D = 0 \]

\[W = 10 \text{ kN} \]

4. (d) Net force = Net mass × acceleration

\[\Rightarrow 36 = 9 \times a \]
\[\Rightarrow a = 4 \text{ m/s}^2 \]

Now, considering 5 kg weight only

force on 5 kg = 5 × 4 N = 20 N

\[36N - F = 20N \]
\[\Rightarrow F = 16N \]

5. (5.5 m/s)

\[f(t) = 3t^2 \]
\[ma = 3t^2 \]
\[m \frac{dv}{dt} = 3t^2 \]
\[2 \int_{1.5}^{v} dv = \int_{0}^{2} 3t^2 \, dt \]
\[2(v - 1.5) = 8 \]
\[v = 5.5 \text{ m/s} \]
Pocket the Knowledge

As a maverick ESE/GATE platform, we embark upon being your learning partner, in your pursuit of excellence.

True to the likenings of engineering students, here, information comes crisp, compact and exact, accompanied by myriad of illustrations that one's eyes can feast upon, and brain to exercise and hone its capabilities. We believe that illustrations speak louder than words; and figures communicate faster than complex wordy pages.

As your eyeballs roll through the app, concepts on all topics – from Material Science to Currents, right from the ESE and GATE toppers - shall come alive before you.

In the swarm of devices based on touch-based, smart technology, IES Master App literally manifests its belief that a right ‘touch’ can change one’s world.

Features

- Daily updates
- Timely notifications
- On the fly bookmark of important notes and questions
- Practice questions on all topics
- Study materials - in the form of notes, quizzes and videos

Also visit @
iesmaster.org | iesmasterpublications.com

Buy Online:
amazon.com
Flipkart

IES MASTER PUBLICATION
F-126 (Lower Basement), Karvana Sarai, New Delhi-110016
Phone: 011 26522064, Mobile: 9711853908
E-mail: info@iesmasterpublications.com, info@iesmaster.org
Web: iesmasterpublications.com

IES MASTER PUBLICATION
F-126 (Lower Basement), Karvana Sarai, New Delhi-110016
Phone: 011 26522064, Mobile: 9711853908
E-mail: info@iesmasterpublications.com, info@iesmaster.org
Web: iesmasterpublications.com

IES MASTER PUBLICATION
F-126 (Lower Basement), Karvana Sarai, New Delhi-110016
Phone: 011 26522064, Mobile: 9711853908
E-mail: info@iesmasterpublications.com, info@iesmaster.org
Web: iesmasterpublications.com

IES MASTER PUBLICATION
F-126 (Lower Basement), Karvana Sarai, New Delhi-110016
Phone: 011 26522064, Mobile: 9711853908
E-mail: info@iesmasterpublications.com, info@iesmaster.org
Web: iesmasterpublications.com