UPSC CIVIL SERVICES
CONVENTIONAL EXAMINATION
SUBJECT-WISE PREVIOUS YEARS SOLVED PAPER-I
(2003-2018)

- Complete Solutions with Explanation
- Also ideal for UPSC ESE Conventional and State Engineering Services exams

16 YEARS SOLUTION
CIVIL ENGINEERING
SUBJECTWISE PREVIOUS YEARS
SOLVED PAPER-I
2003-2018
Civil Services Examination (CSE) and Engineering Services Examination (ESE) are two of the most sought after exams in India. The entrance exams for these highly esteemed services are conducted by the Union Public Services Commission (UPSC) every year.

Civil Services Mains is a subjective exam, which demands good writing skill as well as core knowledge of the subject. Engineering students need to be familiar with the difficulty level as well as the demand of such an exam. A close and detailed scrutiny of the previous years' question papers of Civil Services Mains Examination by the Research & Development team at IES Master reveals the techniques that need to be deployed in handling the Mains exam of Civil Services.

Civil Engineering as an optional subject can do wonders in CSE. It is one stream that touches upon maximum knowledge area, given the vastness of the syllabus. It is this vastness and wilderness of applied knowledge that gives a decisive edge to the engineers in becoming top administrative officers.

This book captures and decodes technical questions of CSE from 2003 to 2018. It is this depth in time that gives students the ability to gauze the direction, and the construct of an engineer required to be a top bureaucrat.

As you delve into the details of this branch, and confront individual subjects, numerous manifestations pile up block by block. With this final raft foundation, you can build upon absolute command over the required subjects. This book also allows you to practice freely on your own as the detailed solutions guide you step by step, whenever the need arises.

Backed by the trust inspired by the mark of ‘IES Master’, you can safely rely on this book.

IES Master Publication
New Delhi
1. ENGINEERING MECHANICS 01 – 26
2. STRENGTH OF MATERIALS 27 – 78
3. STRUCTURAL ANALYSIS 79 – 135
4. STRUCTURAL STEEL DESIGN 136 – 185
5. RCC AND PRESTRESSED CONCRETE 186 – 292
6. GEOTECHNICAL ENGINEERING 293 – 403
7. FLUID MECHANICS 404 – 487
8. HYDRAULIC MACHINES AND HYDROPOWER 488 – 515
9. OPEN CHANNEL FLOW 516 – 545
IES MASTER
Institute for Engineers (IES/GATE/PSUs)

GENERAL STUDIES & ENGINEERING APTITUDE
for ESE 2020
Let General Studies be Your Strength

ADMISSIONS OPEN

Get ESE Prelims Test Series free with complete package

Batch starts on 6th May

Call 9711853908
8010009955

Register Now
Q.1: Three 5 kg masses attached to a light rod ABCD are spun on a frictionless horizontal plane at 600 rpm (10 Hz) about a pinion. What is the maximum force induced in the rod due to spinning?

Sol: Given a light Rod ABCD

Span on the horizontal plane
\[\omega = 600 \text{ rpm} = \frac{2\pi \times 600}{60} = 20\pi \text{ rad/s} \]

Force acting on the rod (F) = centrifugal force due to \(m_A, m_B, m_C \)

\[F_A = m_A \omega^2 R = 5 \times [20\pi]^2 \times 1.5 \]

\[F = m_A \times 1.5 \times \omega^2 + m_B \times 1.0 \times \omega^2 + m_C \times 0.5 \times \omega^2 \]

\[F = 5 \times (20\pi)^2 \times [1.5 + 1 + 0.5] \]

\[F = 59217.63 \text{ N} = 59.22 \text{ kN} \]

Q.2: A component of a machine is subjected to a system of coplanar forces shown in the figure. Neglecting friction, determine the magnitude of force \(P \) to keep the component in equilibrium. Also determine the magnitude and direction of the reaction at the hinge at B.

\[\begin{align*}
AB &= 120 \text{ mm} \\
BC &= 100 \text{ mm}
\end{align*} \]

Sol:

For equilibrium

\[\Sigma F_x = 0 \]

\[-150 - P\cos20^\circ + R_x = 0 \]

\[AB = 120 \text{ cm} \]

\[\Sigma F_y = 0 \]

\[+100 + R_y - P\sin20^\circ = 0 \]

\[\Sigma M_B = 0 \]

\[-100 \times [AB\cos30^\circ] - 150 \times [AB\sin30^\circ] + P\cos20^\circ [BC\sin40^\circ] + P\sin20^\circ [BC\cos40^\circ] = 0 \]

Put \(AB = 120 \text{ mm} \)
BC = 100 mm
⇒ we got
P = + 223.92 kN

From eqn (i) and (ii), we got,

\[R_x = 360.41 \text{ kN} \quad R_y = -23.41 \text{ kN} \]

\[\tan \theta = \frac{R_y}{R_x} = \frac{23.41}{360.41} \Rightarrow \theta = 3°43' \text{ clockwise from x axis} \]

Q.3: **Determine product of inertia of right-angled triangle with respect to x- and y-axes.**

[20 Marks CSE–2005]

Sol:

\[I_{xy} = \int x y \, dA \]

\[y = h \left(1 - \frac{x}{b} \right) \]

Taking a strip element of dx thickness at distance

\[I_{xy} = \int x y \, dA \]

\[\bar{x}_{\text{strip}} = x \]

\[\bar{y}_{\text{strip}} = \frac{y}{2} \]

\[dA = y \, dx \]

\[I_{xy} = \int x \left[\frac{y}{2} \right] y \, dx = \int_0^b \frac{b x y^2}{2} \, dx = \frac{b}{2} \left[\frac{1}{2} \left(\frac{b^2}{2} \right) \right] \left[\frac{1}{4} - 2 \frac{3}{2} \right] = \frac{h^2 b^2}{24} \quad [\text{Ans.}] \]

Q.4: **State the D’Alembert’s principle. Use the principle to determine the natural frequency of a machine component shown in the figure.**

[12 Marks CSE–2005]

Sol: **D’Alembert’s principle:** The principle states that the sum of the differences between the forces acting on a system of mass particles and the time derivatives of the momentum of the system itself along any virtual displacement consistent with the constraints of system, is zero.

\[\sum_i (F_i - m_i a_i) \cdot \delta x_i = 0 \]

where \(F_i = \) Total applied force (excluding constraint force) on \(i^{th} \) particle.
Pocket the Knowledge

As a maverick ESE/GATE platform, we embark upon being your learning partner, in your pursuit of excellence.

True to the likings of engineering students, here, information comes crisp, compact and exact, accompanied by myriad of illustrations that one’s eyes can feast upon, and brain to exercise and hone its capabilities. We believe that illustrations speak louder than words; and figurines communicate faster than complex wordy pages.

As your eyeballs roll through the app, concepts on all topics – from Material Science to Currents, right from the ESE and GATE toppers – shall come alive before you.

In the swarm of devices based on touch-based, smart technology, IES Master App literally manifests its belief that a right ‘touch’ can change one’s world.

Features

- Daily updates
- Timely notifications
- On the fly bookmark of important notes and questions
- Practice questions on all topics
- Study materials - in the form of notes, quizzes and videos

Also visit @
iesmaster.org | iesmasterpublications.com

Like us on facebook
/fsemaster01
Follow us on twitter
/ies_master
Watch us on youtube
/iesmaster01

Buy Online Amazon.com Flipkart

IES MASTER PUBLICATION
F-126 (Lower Basement), Katvaria Sarai, New Delhi-110016
Phone : 011 26522064, Mobile : 971185 3908
E-mail : info@iesmasterpublications.com, info@iesmaster.org
Web : iesmasterpublications.com

550.00