Engineering Services Examination is the gateway to an immensely satisfying job in the engineering sector of India that offers multi-faceted exposure. The exposure to challenges and opportunities of leading the diverse field of engineering has been the main reason behind engineering students opting for Engineering Services as compared to other career options. To facilitate selection into these services, availability of arithmetic solution to previous years’ paper is the need of the day.

It is an immense pleasure to present previous years’ topic-wise objective solved papers of Engineering Services Examination (ESE). This book is an outcome of regular and detailed interaction with the students preparing for ESE every year. It includes solutions along with detailed explanation to all questions. The prime objective of bringing out this book is to provide explanation to each question in such a manner that just by going through the solutions, students will be able to understand the basic concepts and have the capability to apply these concepts in solving other questions that might be asked in future exams. Towards the end, this book becomes indispensable for every ESE aspiring candidate.

IES Master Publication
New Delhi
1. Fluid Mechanics ... 001 – 172
2. Environmental Engineering ... 173 – 312
3. Engineering Hydrology ... 313 – 368
4. Soil Mechanics ... 369 – 530
5. Irrigation Engineering ... 531 – 580
6. Highway Engineering ... 581 – 644
7. Surveying ... 645 – 718
8. Railway Engineering .. 719 – 744
9. Airport Engineering .. 745 – 762
10. Dock and Harbour .. 763 – 774
11. Tunnel Engineering .. 775 – 781
IES MASTER
Institute for Engineers (IES/GATE/PSUs)

Genius Batch
for ESE GATE PSUs
SESSION 2019-20
A Classroom Program for SMART LEARNERS

- Uniform and collective progress
- Get the rub-off with the best engineering minds
- Focus on concepts and problem solving
- Regular practice tests
- Classes by highly experienced faculty

Batches start on
24th May (Morning)
14th June (Evening)

Call 97118 53908, 80100 09955
APPLY ONLINE
UNIT-1 FLUID MECHANICS

SYLLABUS

(A) FLUID MECHANICS, OPEN CHANNEL FLOW, PIPE FLOW

(B) HYDRAULIC MACHINES AND HYDROPOWER
Centrifugal pumps, types, performance parameters, scaling, pumps in parallel; Reciprocating pumps, air vessels, performance parameters; Hydraulic ram; Hydraulic turbines, types, performance parameters, controls, choice; Power house, classification and layout, storage, poundage, control of supply.

CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fluid Properties</td>
<td>1 — 9</td>
</tr>
<tr>
<td>2.</td>
<td>Hydrostatic Pressure</td>
<td>10 — 15</td>
</tr>
<tr>
<td>3.</td>
<td>Liquid in Relative Equilibrium</td>
<td>16 — 20</td>
</tr>
<tr>
<td>4.</td>
<td>Buoyancy and Floatation</td>
<td>21 — 25</td>
</tr>
<tr>
<td>5.</td>
<td>Fluid Kinematics</td>
<td>26 — 36</td>
</tr>
<tr>
<td>6.</td>
<td>Fluid Dynamics</td>
<td>37 — 44</td>
</tr>
<tr>
<td>7.</td>
<td>Weirs and Notches</td>
<td>45 — 53</td>
</tr>
<tr>
<td>8.</td>
<td>Laminar Flow</td>
<td>54 — 63</td>
</tr>
<tr>
<td>9.</td>
<td>Turbulent Flow</td>
<td>64 — 66</td>
</tr>
<tr>
<td>10.</td>
<td>Boundary Layer Theory</td>
<td>67 — 72</td>
</tr>
<tr>
<td>11.</td>
<td>Drag and Lift</td>
<td>73 — 81</td>
</tr>
<tr>
<td>12.</td>
<td>Flow Through Pipes</td>
<td>82 — 95</td>
</tr>
<tr>
<td>13.</td>
<td>Modal Analysis and Dimensional Analysis</td>
<td>96 — 104</td>
</tr>
<tr>
<td>14.</td>
<td>Open Channel Flow</td>
<td>105 — 132</td>
</tr>
<tr>
<td>15.</td>
<td>Hydraulic Machines</td>
<td>133 — 172</td>
</tr>
</tbody>
</table>
FLUID PROPERTIES

IES-1997

1. Which one of the following pressure units represents the LEAST pressure?
 (a) millibar
 (b) mm of mercury
 (c) N/mm²
 (d) kgf/cm²

IES-1998

2. The surface tension of water at 20°C is \(75 \times 10^{-3}\) N/m. The difference in the water surface within and outside an open-ended capillary tube of 1mm internal bore, inserted at the water surface would nearly be
 (a) 5 mm
 (b) 10 mm
 (c) 15 mm
 (d) 20 mm

IES-1999

3. Match List-I (curves labelled A, B, C and D in figure) with List-II (types of fluid) and select the correct answer:

<table>
<thead>
<tr>
<th>List-I</th>
<th>List-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear stress</td>
<td>1. Ideal plastic</td>
</tr>
<tr>
<td></td>
<td>2. Ideal</td>
</tr>
<tr>
<td></td>
<td>3. Non-Newtonian</td>
</tr>
<tr>
<td></td>
<td>4. Pseudoplastic</td>
</tr>
<tr>
<td></td>
<td>5. Thixotropic</td>
</tr>
</tbody>
</table>

Code:
(a) 2 3 1 5
(b) 3 2 1 5
(c) 4 2 5 1
(d) 2 3 5 1

IES-2001

4. Consider the following statements
 In order to have cavitation
 1. Local velocity is increased so that the local pressure is decreased below vapour pressure.
 2. Elevation is kept so high that the local pressure is reduced below vapour pressure.
 3. General ambient pressure is increased to a very high magnitude.
 4. Water hammer must occur in the system.
 Which of these statements are correct?
 (a) 2 and 3
 (b) 3 and 4
 (c) 1 and 2
 (d) 1 and 4

5. Match List-I with List-II and select the correct answer:

<table>
<thead>
<tr>
<th>List-I</th>
<th>List-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Concentrated sugar solution</td>
<td>1. Dilatant fluid</td>
</tr>
<tr>
<td>B. Sewage sludge</td>
<td>2. Bingham plastic fluid</td>
</tr>
<tr>
<td>C. Blood</td>
<td>3. Pseudoplastic fluid</td>
</tr>
<tr>
<td>D. Air</td>
<td>4. Newtonian fluid</td>
</tr>
</tbody>
</table>

Code:
(a) 1 2 3 4
(b) 1 2 4 3
(c) 2 1 3 4
(d) 2 1 4 3

IES-2002

6. Match List-I (Definitions) with List-II (Properties) and select the correct answer:

<table>
<thead>
<tr>
<th>List-I</th>
<th>List-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>B.</td>
</tr>
<tr>
<td>(a) 2 3 1 5</td>
<td></td>
</tr>
<tr>
<td>(b) 3 2 1 5</td>
<td></td>
</tr>
<tr>
<td>(c) 4 2 5 1</td>
<td></td>
</tr>
<tr>
<td>(d) 2 3 5 1</td>
<td></td>
</tr>
</tbody>
</table>
7. Which one of the following statements is correct?
(a) Dynamic viscosity of water is nearly 50 times that of air
(b) Kinematic viscosity of water is 30 times that of air
(c) Water in soil is able to rise a considerable distance above the groundwater table due to viscosity
(d) Vapour pressure of a liquid is inversely proportional to the temperature

8. Which of the following fluids can be classified as non-Newtonian?
1. Kerosene oil
2. Diesel oil
3. Human Blood
4. Toothpaste
5. Water
Select the correct answer using the codes given below:
(a) 1 and 2
(b) 3 and 4
(c) 2 and 5
(d) 1 and 5

9. Assertion (A) : At the standard temperature, the kinematic viscosity of air is greater than that of water at same temperature
Reason (R) : The dynamic viscosity of air at standard temperature is lower than that of water at the same temperature.
1. (a) 1 millibar = $10^{-3} \times 10^5 \text{ N/m}^2 = 100 \text{ N/m}^2$

 1 mm of Hg = 10^{-3} m of Hg
 = $10^{-3} \times 13.6 \text{ m of water}$
 = $10^{-3} \times 13.6 \times 9810$
 = 133.41 N/m

2. (c) For equilibrium

 \[
 2 \pi \sigma = \pi r^2 h g
 \]

 \[
 h = \frac{2 \sigma}{\pi r g} = \frac{2 \times 75 \times 10^{-3}}{(10^{-3} \times 10^3 \times 10)} = 15 \times 10^{-3} \text{ m}
 \]

 \[
 h = 15 \text{ mm}
 \]

3. (a) Curve between shear stress (τ) and velocity gradient ($\frac{du}{dy}$) is:

 - Thixotropic - Printer’s ink
 - Ideal Plastic (Bingham Plastic, Toothpaste, Drilling mud)
 - Rheopetic
 - Pseudo plastic - (Paint, Blood, Paper pulp)
 - Newtonian - (Water, Air, Gasoline)
 - Dilatant (Solution with suspended sand, Starch and butter)
 - Ideal Fluid

4. (c) Cavitation is the formation of vapour bubbles of a flowing liquid in a region where pressure falls below the vapour pressure and sudden collapsing of these vapour bubbles in a region of high pressure. Pressure may fall below vapour pressure due to increase in local velocity, increase in elevation etc.

5. (a)

 (i) Dilatant Fluid: Shear thickening fluid e.g., Solution with suspended sand, conc. sugar solution.

 (ii) Pseudo Plastic Fluid: Shear thinning fluid. Apparent viscosity decrease with increase in velocity gradient e.g., blood, milk

 (iii) Bingham Plastic/Ideal Plastic: It has some initial strength beyond which deformation starts e.g., Toothpaste, Sewage sludge.

 (iv) Newtonian fluid: Water, air, gasoline and oil.

6. (c) Correct sequence should be (c).
10. (d) Power = force × velocity

\[\tau = A \left(\frac{du}{dy} \right)^n + B \]

\[\therefore \tau = \left\{ A \left(\frac{du}{dy} \right)^{n-1} \right\} \left(\frac{du}{dy} \right) + B \]

where, Apparent viscosity = \(A \left(\frac{du}{dy} \right)^{n-1} \)

Now when \(B = 0 \),

\(n = 1 \) ... Newtonian fluid, viscosity invariant of shear stress.

\(n > 1 \) ... Shear thickening fluid i.e., apparent viscosity increases with increase in deformation

\(n < 1 \) ... Shear thinning i.e., apparent viscosity decreases with increase in shear stress (Psedo plastic)

Now when \(B \neq 0 \),

\(n = 1 \) ... Ideal Bingham fluid (tooth paste)

\(n > 1 \) ... Rheological fluid i.e., apparent viscosity increases with increase in shear stress

\(n < 1 \) ... Thixotropic i.e., apparent viscosity decreases with increase in shear stress.

7. (a) Dynamic viscosity of water is nearly 50 times that of air.

\[\mu_w = 8.90 \times 10^{-4} \text{ Pa.sec} \]

\[\mu_{air} = 1.81 \times 10^{-5} \text{ Pa.sec} \]

\[\frac{\mu_w}{\mu_{air}} = \frac{8.90 \times 10^{-4}}{1.81 \times 10^{-5}} = 49.17 = 50 \]

- Water in soil is able to rise a considerable distance above ground water table due to capillary action.
- Vapour pressure increases with the increase in temperature

8. (b) Example of Newtonian fluid → Kerosene oil, Air, Water, Diesel oil.
Example of Non-Newtonian fluid → Human blood, Tooth paste etc.

9. (b) Dynamic viscosity of water is approximately 50 times that of air, but density water is around 850 times more than air so kinematic viscosity of air is more than that of water and defined as

\[\text{Kinematic viscosity} = \frac{\text{Dynamic viscosity}}{\text{Density}} \]

Hence, both the statements are correct but R is not the correct explanation of A.

10. (d) Power = force × velocity

\[= \mu A \left(\frac{du}{dy} \right) \times V \]

\[= 0.0014 \times 0.15 \times \frac{20}{0.02} \times 20 \times 10^{-2} \]

\[= 0.042 \text{ W} \]

11. (c)

Surface tension force in upward direction

\[= \sigma \pi d \cos \alpha \text{ ... (i)} \]

.: Weight of the liquid in the downward direction

\[= \left(\frac{\pi}{4} d^2 h \right) w \text{ ... (ii)} \]

Equating (i) and (ii)

\[\Rightarrow \sigma \pi d \cos \theta = \left(\frac{\pi}{4} d^2 h \right) w \]

\[h = \left(\frac{4 \sigma \cos \alpha}{wd} \right) \text{ ... (iii)} \]

12. (b)

- Cavitation is the formation of vapour bubble in a flowing liquid in the region where the pressure falls below the vapour pressure and sudden collapsing of these vapour bubbles in the high pressure region.
- We know Bernoulli’s equation

\[\frac{P}{\gamma} + \frac{v^2}{2g} + z = \text{constant} \]

If we increase either elevation or velocity of flow, it would result in decrease in pressure head so chances of cavitation are more.