Engineering Services Exam (ESE) is one of the most coveted exams written by engineering students aspiring for reputed posts in the various departments of the Government of India. ESE is conducted by the Union Public Services Commission (UPSC), and therefore the standards to clear this exam too are very high. To clear the ESE, a candidate needs to clear three stages - ESE Prelims, ESE Mains and Personality Test.

It is not mere hard work that helps a student succeed in an examination like ESE that witnesses lakhs of aspirants competing neck to neck to move one step closer to their dream job. It is hard work along with smart work that allows an ESE aspirant to fulfill his dream.

After detailed interaction with students preparing for ESE, IES Master has come up with this book which is a one-stop solution for engineering students aspiring to crack this most prestigious engineering exam. The book includes previous years' solved conventional questions segregated topicwise along with detailed explanation. This book will also help ESE aspirants get an idea about the pattern and weightage of questions asked in ESE.

IES Master feels immense pride in bringing out this book with utmost care to build upon the exam preparedness of a student up to the UPSC standards. The credit for flawless preparation of this book goes to the entire team of IES Master Publication. Teachers, students, and professional engineers are welcome to share their suggestions to make this book more valuable.

IES Master Publication
New Delhi
IES MASTER
Institute for Engineers (IES/GATE/PSUs)

MASTER TALENT REWARD EXAM (MTRE)

Get up to 100% Scholarship

A National Level Online Scholarship Test

- Opportunity to get up to 100% off on tuition fee
- Chance to study with the best engineering minds
- Learn in a stress-free environment
- Know your ranking at national level

Exam Date
28th October 2018
Registration starts on
13th August, 2018

For ESE & GATE Aspirants
Session 2019-20

Visit iesmaster.org/master-talent-reward-exam or Call on +91 8010009955 | +91 9711853908
UNIT 1

CIRCUIT THEORY

SYLLABUS

CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Network Elements ..</td>
<td>01-31</td>
</tr>
<tr>
<td>2.</td>
<td>Transient and Steady State Response</td>
<td>32-58</td>
</tr>
<tr>
<td>3.</td>
<td>Resonance ..</td>
<td>59-67</td>
</tr>
<tr>
<td>4.</td>
<td>Network Theorems ..</td>
<td>68-91</td>
</tr>
<tr>
<td>5.</td>
<td>Two-Port Network ...</td>
<td>92-116</td>
</tr>
<tr>
<td>6.</td>
<td>Network Functions ..</td>
<td>117-133</td>
</tr>
<tr>
<td>7.</td>
<td>Network Synthesis ..</td>
<td>134-146</td>
</tr>
<tr>
<td>8.</td>
<td>3-Phase Circuits, Network Graphs and Filters</td>
<td>147-156</td>
</tr>
</tbody>
</table>
Q–1: Define precisely unit step and unit impulse functions. [8 Marks ESE–1987]

Sol. Unit Step Function: Unit step function is defined as

\[u(t) = \begin{cases}
0 & ; \ t < 0 \\
1 & ; \ t > 0
\end{cases} \]

Note : Unit step function is discontinuous at \(t = 0 \)

Unit impulse function: Unit impulse function is defined as

\[\delta(t) = \begin{cases}
0 & ; \ t \neq 0 \\
\infty & ; \ t = 0
\end{cases} \]

Note : The area of the unit impulse signal is 1

\[\int_{-\infty}^{\infty} \delta(t) dt = 1 \]

The continuous-time unit step is the running integral of the unit impulse

\[u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau \]

\[\Rightarrow \quad \delta(t) = \frac{du(t)}{dt} \]

i.e. unit impulse is the running derivative of the unit step function.

Q–2: Sketch the following function from \(t = 0 \) to \(t = 10 \) units, indicating all salient values at different times [12 Marks ESE–1987]

\[50(1-\frac{1}{2} t[u(t)-u(t-4)] \]
The graphs of function at different stages are shown below.

Let
\[f_1(t) = u(t) - u(t-4) \]
\[f_2(t) = 25t[u(t) - u(t-4)] \]

\[f(t) = 50 - f_2(t) \]

Q-3: **Unit Step and Unit Impulse Functions.**

Sol. **Unit Step Function:** Unit step function is defined as
\[u(t) = \begin{cases}
0 & ; \ t < 0 \\
1 & ; \ t > 0
\end{cases} \]
Note: Unit step function is discontinuous at \(t = 0 \)

Unit impulse function: Unit impulse function is defined as

\[
\delta(t) = \begin{cases}
0 & ; t \neq 0 \\
\infty & ; t = 0
\end{cases}
\]

The area of the unit impulse signal is 1

\[
\int_{-\infty}^{\infty} \delta(t) dt = 1
\]

The continuous-time unit step is the running integral of the unit impulse

\[
u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau
\]

\[\Rightarrow \quad \delta(t) = \frac{du(t)}{dt}
\]

i.e. Unit impulse is the running derivative of the Unit Step Function.

Q-4: Considering \(i(t) \) as input and \(v(t) \) as output in the network shown in Fig., find unit step response and the unit ramp response with \(v(0) = 0 \).

Sol.

Applying KCL at node P

\[
i(s) = \frac{V(s)}{2} + \frac{1}{s} \Rightarrow V(s) = \frac{i(s)}{s + 0.5}
\]

For unit step input current

\[
i(s) = \frac{1}{s} \Rightarrow V(s) = \frac{1}{s(s + 0.5)} = 2 \left[\frac{1}{s} - \frac{1}{s + 0.5} \right]
\]

Taking inverse a laplace

\[
v(t) = \mathcal{L}^{-1}[V(s)] = 2[1 - e^{-0.5t}]u(t)
\]

For unit ramp input current

\[
i(s) = \frac{1}{s^2}
\]