Engineering Services Exam (ESE) is one of the most coveted exams written by engineering students aspiring for reputed posts in the various departments of the Government of India. ESE is conducted by the Union Public Services Commission (UPSC), and therefore, the standards to clear this exam are very high. To clear the ESE, a candidate needs to clear three stages – ESE Prelims, ESE Mains, and Personality Test.

It is not mere hard work that helps a student succeed in an examination like ESE that witnesses lakhs of aspirants competing neck to neck to move one step closer to their dream job. It is hard work along with smart work that allows an ESE aspirant to fulfill his dream.

After detailed interaction with students preparing for ESE, IES Master has come up with this book which is a one-stop solution for engineering students aspiring to crack this most prestigious engineering exam. The book includes previous years’ solved conventional questions segregated topic-wise along with detailed explanation. This book will also help ESE aspirants get an idea about the pattern and weightage of questions asked in ESE.

IES Master feels immense pride in bringing out this book with utmost care to build upon the exam preparedness of a student up to the UPSC standards. The credit for flawless preparation of this book goes to the entire team of IES Master Publication. Teachers, students, and professional engineers are welcome to share their suggestions to make this book more valuable.

IES MASTER PUBLICATION
NEW DELHI
<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THEORY OF MACHINES</td>
<td>01 – 118</td>
</tr>
<tr>
<td>2</td>
<td>STRENGTH OF MATERIALS</td>
<td>119 – 220</td>
</tr>
<tr>
<td>3</td>
<td>MACHINE DESIGN</td>
<td>221 – 321</td>
</tr>
<tr>
<td>4</td>
<td>PRODUCTION ENGINEERING</td>
<td>322 – 548</td>
</tr>
<tr>
<td>5</td>
<td>INDUSTRIAL ENGINEERING</td>
<td>549 – 627</td>
</tr>
<tr>
<td>6</td>
<td>MECHATRONICS AND ROBOTICS</td>
<td>628 – 642</td>
</tr>
</tbody>
</table>
Syllabus


Contents

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mechanisms</td>
<td>01 – 10</td>
</tr>
<tr>
<td>2.</td>
<td>Velocity and Acceleration</td>
<td>11 – 18</td>
</tr>
<tr>
<td>3.</td>
<td>CAMS and Governor</td>
<td>19 – 35</td>
</tr>
<tr>
<td>4.</td>
<td>Gears and Gear Trains</td>
<td>36 – 64</td>
</tr>
<tr>
<td>5.</td>
<td>Slider Crank Mechanism, Flywheel and Hooke Joint</td>
<td>65 – 75</td>
</tr>
<tr>
<td>6.</td>
<td>Balancing of Masses</td>
<td>76 – 97</td>
</tr>
<tr>
<td>7.</td>
<td>Vibration Analysis</td>
<td>98 – 117</td>
</tr>
<tr>
<td>8.</td>
<td>Gyroscope</td>
<td>118 – 118</td>
</tr>
</tbody>
</table>
MASTER TALENT REWARD EXAM (MTRE)

Get up to 100% Scholarship

A National Level Online Scholarship Test

- Opportunity to get up to 100% off on tuition fee
- Chance to study with the best engineering minds
- Learn in a stress-free environment
- Know your ranking at national level

Exam Date
28th October 2018

Registration starts on
13th August, 2018

Visit iesmaster.org/master-talent-reward-exam or Call on +91 8010009955 | +91 9711853908
Q–1: **Distinguish and differentiate between machine and mechanism. Define the term inversion of a kinematic chain.**  

**Sol:**  

**Difference Between Machine and Mechanism**

<table>
<thead>
<tr>
<th>Machine</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) A machine is mechanism or a collection of mechanism which transmit force from the source of power to the resistance to be overcome and thus perform a mechanical work.</td>
<td>(i) A mechanism is a combination of rigid or restraining bodies so shaped and connected that they move upon each other with a definite relative motion.</td>
</tr>
<tr>
<td>(ii) Machine may have many mechanisms for transfer of force/motion.</td>
<td>(ii) It is the skeleton outline of machine to produce definite motion between links. No links is fixed/grounded.</td>
</tr>
</tbody>
</table>

**Examples**
- Lathe machine—motion + force i.e. work done
- Mechanical clock, typewriter, Engine p–V diagram, drawing Indirector Mechanical clock: No power output i.e. energy stored (spring work) is used to run the hands. In mechanism, friction is there but that is not of mechanical advantage.

**Inversion of kinematic chain:** The process of fixing different links of a kinematic chain one at a time to produce distinct mechanism is called kinematic inversion. Here the relative motion of the links of the mechanism remains unchanged.

Q–2: **Discuss about the possible inversions (with figures) of a four bar chain.**  

**Sol:**  

**Inversion of four bar Chain:** The process of fixing different links of a kinematic chain is known as kinematic inversion.

Consider a 4-bar mechanism shown in the figure.

The length of four links are a, b, c and d as shown in figure.

Now fix each link one by one and get a different inversion,

(a) **Shortest length link ‘d’ is fixed i.e. d < b, c,a.**

Sum of shortest and longest link length is less than sum of rest two.

- In above conditions both ‘a’ and ‘c’ can make full revolution and ‘b’ also make full revolution relative to fixed link ‘d’. This type of mechanism is called as crank-crank, or double cranks or rotatory-rotatory or drag-crank mechanism.

(b) **Link adjacent to Shortest (a or c) is fixed**

- Both the cases, ‘d’ makes complete revolution.
- But link ‘b’ oscillates.
- This mechanism is called as crank-rocker or crank-lever or rotatory-oscilatory mechanism.
(c) Fix link ‘b’ opposite to shortest link
Here links adjacent to shortest i.e. ‘a’ and ‘c’ can oscilate only. This mechanism is called as double rocker or double lever or oscillating-oscilating mechanism as Class-II of mechanism when sum of shortest and longest links is more than sum of rest two.

Q–3: **Explain Grashof’s linkage. Explain the inversions of this linkage.** [4 Marks ESE–2015]

**Sol :** A very important consideration when designing a mechanism is to ensure that the input crank can make a complete revolution. Mechanisms in which no link makes a complete revolution would not be useful in such applications. Grashof’s law states that for a planar four-bar linkage, the sum of the shortest and longest link lengths cannot be greater than the sum of the remaining two link lengths if there is to be continuous relative rotation between two members. Let the longest link has length \( l \), the shortest link has length \( s \), and the other two links have lengths \( p \) and \( q \). In this notation, Grashof’s law states that one of the links, in particular the shortest link, will rotate continuously relative to the other three links if and only if

\[
 s + l \leq p + q
\]

If this inequality is not satisfied, no link will make a complete revolution relative to another.

By fixing different links one by one in a mechanism, different mechanisms are obtained. This process of getting different mechanism is called inversion of mechanisms. The relative motion between the links remain same irrespective of any link fixed.

1. **Inversion of Four Bar Chain**
   Consider a 4-bar mechanism shown in the figure.
   The length of four links are \( a, b, c \) and \( d \) as shown in figure.
   (a) **Shortest length link ‘d’ is fixed i.e. \( d < b, c, a \).**
   - Sum of shortest and longest link length is less than sum of rest two.
   - In above conditions both ‘a’ and ‘c’ can make full revolution and ‘b’ also make full revolution relative to fixed link ‘d’. This type of mechanism is called as crank-crank, or double cranks or rotatory-rotatory or drag-crake mechanism.

(b) **Link adjacent to Shortest (a or c) is fixed**
   - Both the cases, ‘d’ makes complete revolution.
   - But link ‘b’ oscilates.
   - This mechanism is called as crank-rocker or crank-lever or rotatory-oscilatory mechanism.

(c) **Fix link ‘b’ opposite to shortest link**
   - Here links adjacent to shortest i.e. ‘a’ and ‘c’ can oscilate only. This mechanism is called as double rocker or double lever or oscillating-oscilating mechanism as Class-II of mechanism when sum of shortest and longest links is more than sum of rest two.
Q–4: **Draw a crank rocker mechanism and identify all instantaneous centres.** [4 Marks ESE–2014]

**Sol :**
For crank-rocker mechanism, the Grashof law should be satisfied. i.e. “Sum of length of largest link and smallest link should be less than the sum of rest two intermediate length links.” Hence atleast one link of four bar chain is crank if Grashof law is satisfied.

To get crank rocker mechanism, the link adjacent to shortest should be fixed as shown below i.e. link ‘1’ or ‘3’ should be fixed.

All instantaneous centres are marked on figure.

Q–5: **One of the turning pairs of a four-bar chain is replaced by a sliding pair. Draw the inversions by fixing different links. Give one application for each of the mechanism.** [10 Marks ESE–2013]

**Sol :**
When one of the turning pair of four bar chain is replaced by sliding pair, the mechanism is called sliding pair mechanism.

Various inversion of sliding pair mechanism.

We know that in 4-bar mechanism a turning pair can be replaced by a sliding pair and resultant mechanism is called as slider-crank mechanism as shown in figure. The various inversions of slider crank mechanism are,

(a) **First Inversion**
   (a) Fixing link ‘1’.
   (b) Link-2 as crank i.e., complete revolutions.

**Applications**
- **Reciprocating Compressor** : Hence crank-2 is driver and piston-4 is follower.
- **Reciprocating Engine** : Here piston-4 is driver and crank-2 is follower.

(b) **Second Inversion**
Now fix link-2 and link-3 along with slider rotates. This makes the link-1 to oscilate as shown below.

**Applications**
- **Whitworth Quick Return mechanism**
- **Rotatory Engine**
Pocket the Knowledge

As a maverick ESE/GATE platform, we embark upon being your learning partner, in your pursuit of excellence.

True to the likes of engineering students, here, information comes crisp, compact and exact, accompanied by myriad of illustrations that one’s eyes can feast upon, and brain to exercise and hence its capabilities. We believe that illustrations speak louder than words, and figures communicate faster than complex wordy pages.

As your eyeballs roll through the app, concepts on all topics – from Material Science to Currents, right from the ESE and GATE toppers - shall come alive before you.

In the swarm of devices based on touch-based, smart technology, IES Master App literally manifests its belief that a right ‘touch’ can change one’s world.

Features

- Daily updates
- Timely notifications
- On the fly bookmark of important notes and questions
- Practice questions on all topics
- Study materials - in the form of notes, quizzes and videos.

Also visit @

iesmaster.org | iesmasterpublications.com

Like us on Facebook /iesmaster61
Follow us on twitter /ies_master
Watch us on youtube /iesmaster61

IES MASTER PUBLICATION

F-126 (Lower Basement), Katvaria Sarai, New Delhi-110016
Phone: 011 26522064, Mobile: 97 1185 3908
E-mail: info@iesmasterpublications.com, info@iesmaster.org
Web: iesmasterpublications.com

₹ 800.00