Standards & Quality Practices
In Production, Construction, Maintenance & Services

New Pattern
for UPSC IES/CSE
Preface to first Edition

Standards & Quality Practices has been written mainly to cater for students appearing for union public service commission, ESE (Engineering Services Examination), State public service commission and other competitive examinations. It covers in detail the syllabi for these examinations. Questions typical of those set in the examinations have been included to practice and to discover the extent of their knowledge. Keywords are printed in bold type to assist the student further in assimilating the information.

In writing this book we have had in mind the needs and interests of students appearing for these competitive examinations, since most of the text books already available are written too extensively making most of it irrelevant to the demands of the examination. The boxed information focus on points of topical interest or on particular concept.

IES Master wishes to take this opportunity of thanking Dr. Ramji Annepu for his extensive contribution in generating, shaping, editing and production of this book. We also thank the staff at IES Master and all those who have assisted with information and advice in the production of this book.

IES Master Publication

New Delhi, 2016
CONTENTS

<table>
<thead>
<tr>
<th>Chapter-1</th>
<th>Introduction to Quality</th>
<th>01 – 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter-2</td>
<td>Approaches to Quality: Deming, Juran, Crosby</td>
<td>19 – 38</td>
</tr>
<tr>
<td>Chapter-3</td>
<td>Management Tools in Quality</td>
<td>39 – 64</td>
</tr>
<tr>
<td>Chapter-4</td>
<td>Statistical Tools in Quality</td>
<td>65 – 82</td>
</tr>
<tr>
<td>Chapter-5</td>
<td>Total Quality Management</td>
<td>83 – 90</td>
</tr>
<tr>
<td>Chapter-6</td>
<td>Quality Function Deployment & FMEA</td>
<td>91 – 100</td>
</tr>
<tr>
<td>Chapter-7</td>
<td>Quality Standards</td>
<td>101 – 122</td>
</tr>
<tr>
<td>Chapter-8</td>
<td>Quality in Manufacturing/Production</td>
<td>123 – 138</td>
</tr>
<tr>
<td>Chapter-9</td>
<td>Quality in Construction</td>
<td>139 – 160</td>
</tr>
<tr>
<td>Chapter-10</td>
<td>Quality in Maintenance</td>
<td>161 – 184</td>
</tr>
<tr>
<td>Chapter-11</td>
<td>Quality in Services</td>
<td>185 – 199</td>
</tr>
<tr>
<td>Practice Work Sheets</td>
<td></td>
<td>194 – 241</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td></td>
<td>(iii)</td>
</tr>
<tr>
<td>CONTENTS</td>
<td></td>
<td>(v)</td>
</tr>
<tr>
<td>CHAPTER-1</td>
<td>INTRODUCTION TO QUALITY</td>
<td>1 – 18</td>
</tr>
</tbody>
</table>

1.1 **Introduction**

1.1.1 **Definition**

1.1.1.1 General Properties Quality Product/ Service

1.2 **Quality Policy Implementation**

1.2.1 **Customer**

1.2.1.1 Customer Needs

1.2.1.2 Customer Satisfaction

1.2.2 **Cost of Quality**

1.2.2.1 Cost of quality Mainly comprises four parts

1.2.2.2 Significant

1.2.3 **Quality Measurement**

1.2.3.1 Conformance to Specifications

1.2.3.2 Quality Assurance

1.2.3.3 Quality Audit

1.2.3.4 Types of Audits

1.2.3.5 Quality Survey

1.2.3.6 Product Audit

1.3 **Quality Control**

1.3.1 **Standard Specifications**

1.3.1.1 Objectives of Quality Control

1.3.1.2 Quality Control And Quality Assurance

1.3.1.3 Quality Introduction Levels

1.3.1.4 Quality Maintaining Functions

1.3.1.5 Quality Engineering recognizes four other characteristics
CHAPTER-2 APPROACHES TO QUALITY: DEMING, JURAN, CROSBY 19 – 36

2.1 Poka-yoke 19
- 2.1.1 Benefits of Poka Yoke 20

2.2 kaizen concept 21
- 2.2.1 Total Quality Control 22
- 2.2.2 Kanban Just-in-time System 23
- 2.2.3 Quality Circles 23
- 2.2.4 Total Productive Maintenance (TPM) 24
- 2.2.5 Kaizen Vs. Innovation 24

2.3 Deming’s approach 25
- 2.3.1 Points to Quality Management 26
- 2.3.2 Seven Deadly Sins 28
- 2.3.3 The PDCA Cycle 29
- 2.3.4 PDCA in TQM 29

2.4 Juran’s approach 29
- 2.4.1 Juran’s Key ideas 29
 - 2.4.1.1 Pareto Principle 29
 - 2.4.1.2 Quality Campaigns 30
- 2.4.2 Breakthrough 30
- 2.4.3 Juran’s Trilogy and Quality Planning Road Map 30

2.5 crosby’s approach 31
- 2.5.1 Four major principles 32
- 2.5.2 14 Steps for effective quality program 32

2.6 Concurrent Engineering 35

CHAPTER-3 MANAGEMENT TOOLS IN QUALITYY 37 – 62

3.1 Introduction 37

3.2 Seven Traditional Quality Tools 38
- 3.2.1 Pareto Chart 38
 - 3.2.1.1 Histogram 39
- 3.2.2 Process Flow Diagram 40
- 3.2.3 Check sheet 40
- 3.2.4 Scatter Diagram 41
- 3.2.5 Control Chart 42
- 3.2.6 Run Chart 42
3.2.7 Cause and Effect Diagram 43

3.3 Seven Recent QC Tools 43
3.3.1 Affinity Diagram 45
3.3.2 Interrelations Diagram 45
3.3.3 Tree Diagram 46
3.3.4 Matrix Diagram 47
3.3.5 Matrix Data Analysis Chart: (MDAC) 48
 3.3.5.1 Prioritization Matrices 48
3.3.6 Process Decision Program Chart (PDPC) 49
3.3.7 Activity Network Diagram 50

3.4 Offline Quality Control 51
3.4.1 Taguchi Method 52
 3.4.1.1 Customer Loss Functions 52
 3.4.1.2 Parameter Design 53
 3.4.1.3 Performance Measure 54
 3.4.1.4 Taguchi’s Tolerance Design/ Allowance 54

3.5 Experimental Designs, Six Sigma and Benchmarking 55
3.5.1 Experimental Design for Quality 56
 3.5.1.1 One Factor at a Time Method 56
 3.5.1.2 The Full Factorial Method 56
 3.5.1.3 The Fractional Factorial Method 56
3.5.2 Six Sigma 57
 3.5.2.1 Methodology 58
 3.5.2.2 Six Sigma Organization Structure 59
3.5.3 Benchmarking 61
 3.5.3.1 Approach 61

CHAPTER-4 STATISTICAL TOOLS IN QUALITY 63 – 78

4.1 Introduction 63
4.1.1 Significance of Statistics 63
 4.1.1.1 Descriptive Statistics 64
 4.1.1.2 Inferential Statistics 64
4.1.2 Population & Sample 65
 4.1.2.1 Parameter Versus Statistic 65
4.1.3 Measures of Central Tendency and Dispersion 66
4.1.4 Confidence Interval 69
4.1.5 Testing of Hypothesis 70
4.2 Probability Theory 70
4.2.1 Additive Law of Probability 71
4.2.2 Multiplicative Law of Probability 71
4.3 Statistical Process Control 73
4.3.1 Random and Assignable Causes 74
4.3.2 Control Charts for Variables 75
 4.3.2.1 Cusum Chart 77
4.3.3 Control Charts for Attributes 78
4.3.4 Pre-control Chart 78
4.4 Reliability 79
 4.4.1 Reliability and Quality 80

CHAPTER-5 TOTAL QUALITY MANAGEMENT 79 – 86
5.1 Total Quality Management 79
 5.1.1 Total Quality Management Principles 80
 5.1.2 Key Elements 81
 5.1.2.1 Foundation 82
 5.1.2.2 Building Bricks 82
 5.1.2.3 Binding Mortar 83
 5.1.2.4 Roof 83
 5.1.3 Axioms of TQM 84
 5.1.4 Implementation of TQM 84
 5.1.5 Approaches to Implement TQM 85
 5.1.5.1 Integrated Management Approach 85
 5.1.5.2 Traditional Management Approach 85
 5.1.5.3 Benefits & Disadvantages 86
 5.1.5.4 Disadvantages 86

CHAPTER-6 QUALITY FUNCTION DEPLOYMENT & FMEA 87 – 96
6.1 Quality Function Deployment 89
 6.1.1 House of Quality 91
 6.1.1.1 Continual Improvement 92
 6.1.1.2 Benefits 93
 6.2 Failure Mode and Effects Analysis (FMEA) 92
 6.2.1 Elements of FMEA 93
 6.2.2 Process FMEA 94
7 Standards

- **7.1** Standards
 - **7.1.1** Purpose of Standards
 - **7.1.2** Levels of Standardization

7 Specifications

- **7.2** Specifications
 - **7.2.1** Types of Specification
 - **7.2.1.1** 1st set of Classification
 - **7.2.1.2** 2nd set of Classification
 - **7.2.2** Benefits of Specifications

7 Iso International Organization for Standardization

- **7.3** Iso International Organization for Standardization
 - **7.3.1** ISO 9000 Components
 - **7.3.2** Benefits of ISO 9000

7 Bureau of Indian Standards (BIS)

- **7.4** Bureau of Indian Standards (BIS)
 - **7.4.1** Formulation of Indian Standards
 - **7.4.2** Certification schemes operated by BIS
 - **7.4.2.1** Quality System Certification
 - **7.4.2.2** Environmental Management Systems
 - **7.4.2.3** HACCP Scheme
 - **7.4.2.4** Rajiv Gandhi National Quality Award

7 Quality Council of India

- **7.5** Quality Council of India
 - **7.5.1** The objectives of QCI

7 ISO 14000

- **7.6** ISO 14000

7 Occupational Safety and Health Administration (OSHA)

- **7.7** Occupational Safety and Health Administration (OSHA)
 - **7.7.1** Occupational Safety and Health Administration
 - **7.7.1.1** OSHA Standards fall into the following four categories
 - **7.7.1.2** OSHA Benefits

7 Quality System Standards & Business Excellence Models

- **7.8** Quality System Standards & Business Excellence Models
 - **7.8.1** Quality System Standards
 - **7.8.1.1** Generic Standards
 - **7.8.1.2** Industry-Related Standards
 - **7.8.1.3** Quality Standards Serve the following Three Purposes
CHAPTER-8 QUALITY IN MANUFACTURING/PRODUCTION 119 – 134

8.1 Standards 119
8.2 Quality Management Strategies 119
8.3 Manufacturing Planning for Quality 122
 8.3.1 Basic Approach to Quality Planning 123
 8.3.1.1 Minor Changes in the Existing Product 123
 8.3.1.2 Considerable Change in the Existing Product 123
 8.3.1.3 Entirely New Products 123
8.4 Quality Conformance in Manufacturing 124
8.5 Quality Control 125
 8.5.1 Benefits of Quality Control in Manufacturing 126
 8.5.2 Quality Control in Manufacturing 129
 8.5.3 Real-Time Defect Prevention 129
 8.5.4 Quality Control and Lean Manufacturing 129
8.6 Lean Manufacturing 130
 8.6.1 Five Lean Manufacturing Principles 131
 8.6.1.1 Identify Value 131
 8.6.1.2 Map the Value Stream 131
 8.6.1.3 Create Flow 132
 8.6.1.4 Establish Pull 132
 8.6.1.5 Seek Perfection 133
 8.6.2 Solutions for Lean Manufacturing Principles 133

CHAPTER-9 QUALITY IN CONSTRUCTION 135 – 154

9.1 Construction 135
 9.1.1 Objectives 136
 9.1.2 Scope 137
 9.1.3 Holistic View of Quality Management 138
 9.1.4 Organization Structure for Quality Management 139
 9.1.4.1 Quality Management in Construction 139
9.2 Management of Quality in Different Stages of the Project 140

9.2.1 Pre-construction Phase 140
 9.2.1.1 Project Appraisal 140
 9.2.1.2 Project Development 141
 9.2.1.3 Planning for Construction 142
 9.2.1.4 Tender Action 142

9.2.2 Construction Phase 142
 9.2.2.1 Quality in Construction Stages 142
 9.2.2.2 Pre-construction Managerial Decisions 143
 9.2.2.3 Design and Engineering 143
 9.2.2.4 Quality Management System of Construction Agency 143

9.2.3 Commissioning and Handing Over Stage 143

9.3 Quality Management Requirements 144
 9.3.1 Preparation of Quality Policy 144
 9.3.2 QA & QC Manual and Quality Plan 145
 9.3.2.1 Quality Plan (IS 10005: 2005) 145
 9.3.2.2 Quality Procedures for Construction Equipment, Plant and Machineries 146
 9.3.2.3 Quality Procedures for Works 146
 9.3.2.4 Traceability 147
 9.3.2.5 Dissemination of Quality Documents 147
 9.3.3 Management of Stakeholder Interfaces 147
 9.3.4 Developing Competence through Training 147
 9.3.5 Management of Resources 147
 9.3.5.1 Procurement of Supplies and Services 148
 9.3.5.2 Resource Need Analysis & Deployment Planning 148
 9.3.6 Project Peculiarities and Performance Risks 148
 9.3.7 Integration, Clash Analysis & Validation 148
 9.3.7.1 Integration of Technical Interfaces 149
 9.3.7.2 Lean Construction Processes 149
 9.3.7.3 Clash Analysis of Activities 149
 9.3.7.4 Validation of Work Processes 149
 9.3.8 Establishing Infrastructure for Construction Quality 149
 9.3.8.1 Provision for Inspection & Test Equipment 149
9.3.8.2 Control Laboratories and Testing Facilities
9.3.8.3 Environmental Conditions and Enabling Infrastructure for Work Performance

9.3.9 Training facilities

9.3.10 Non-conforming Works, Emergencies & Disasters
9.3.10.1 Identification, Segregation & Disposal
9.3.10.2 Review and Management of Risks
9.3.10.3 Management Response
9.3.10.4 Prevention and Corrective Actions

9.3.11 Monitoring and Continual Improvement
9.3.11.1 Quality Performance Indicators
9.3.11.2 Construction Process Outputs
9.3.11.3 Quality Auditing
9.3.11.4 Quality Cost Analysis (IS 10708)
9.3.11.5 Quality Improvement Benchmarks
9.3.11.6 Quality Improvement Interventions
9.3.11.7 Organizational Process Assets Update

9.4 Promoting a Quality Culture
9.5 Performance Appraisal and Recognition,
9.5.1 Integration with other Management System
9.5.2 Post Construction Review & Documentation

CHAPTER-10 QUALITY IN MAINTENANCE
155 – 178

10.1 Maintenance
10.1.1 Importance of maintenance
10.1.2 Objectives of Maintenance
10.1.3 Types of Maintenance

10.2 Maintenance Policies
10.2.1 Major maintenance policies are
10.2.1.1 Preventive maintenance
10.2.1.2 Fixed-time replacement
10.2.1.3 Condition-based Maintenance
10.2.1.4 Opportunity Maintenance
10.2.1.5 Failure & Corrective Maintenance
10.2.1.6 Design-out Maintenance
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 Dimensions of service quality</td>
<td>185</td>
</tr>
<tr>
<td>11.4 Delivering Service Quality</td>
<td>187</td>
</tr>
<tr>
<td>11.4.1 Systems and Processes</td>
<td>187</td>
</tr>
<tr>
<td>11.4.2 People</td>
<td>189</td>
</tr>
<tr>
<td>11.5 Measuring Service Quality</td>
<td>190</td>
</tr>
<tr>
<td>11.5.1 Measuring Subjective Elements</td>
<td>191</td>
</tr>
<tr>
<td>11.5.2 Measuring Objective Elements</td>
<td>191</td>
</tr>
<tr>
<td>11.5.3 Soft Measures of Service Quality</td>
<td>191</td>
</tr>
<tr>
<td>11.5.4 Hard Measures of Service Quality</td>
<td>192</td>
</tr>
<tr>
<td>11.6 Service Quality Standards (SQSs) and Criteria</td>
<td>192</td>
</tr>
<tr>
<td>11.6.1 Principle 1: Provision of Information</td>
<td>192</td>
</tr>
<tr>
<td>11.6.2 Principle 2: Service Management</td>
<td>192</td>
</tr>
<tr>
<td>11.6.3 Principle 3: Service to Users</td>
<td>193</td>
</tr>
<tr>
<td>11.6.4 Principle 4: Respect for Service Users Right</td>
<td>193</td>
</tr>
</tbody>
</table>

Practice Work Sheets

194 – 241