CIVIL ENGINEERING ESE TOPICWISE CONVENTIONAL SOLVED PAPER-I

Office: F-126, (Lower Basement), Katwaria Sarai, New Delhi-110 016
Phone: 011-2652 2064 • Mobile: 81309 09220, 9711853908
Email: info.publications@ iesmaster.org, info@iesmaster.org

IES MASTER PUBLICATION

F-126, (Lower Basement), Katwaria Sarai, New Delhi-110016
Phone : 011-26522064, Mobile : 8130909220, 9711853908
E-mail : info.publications@iesmaster.org
Web : iesmasterpublications.com

All rights reserved.

Copyright © 2024, by IES MASTER Publication No part of this booklet may be reproduced, or distributed in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without the prior permission of IES MASTER Publication, New Delhi. Violates are liable to be legally prosecuted.

Eighth Edition : 2024

PREFACE

Engineering Services Exam (ESE) is one of most coveted exams written by engineering students aspiring for reputed posts in the various departments of the Government of India. ESE is conducted by the Union Public Services Commission (UPSC), and therefore the standards to clear this exam too are very high. To clear the ESE, a candidate needs to clear three stages - ESE Prelims, ESE Mains and Personality Test.

It is not mere hard work that helps a student succeed in an examination like ESE that witnesses lakhs of aspirants competing neck to neck to move one step closer to their dream job. It is hard work along with smart work that allows an ESE aspirant to fulfil his dream.

After detailed interaction with students preparing for ESE, IES Master has come up with this book which is a one-stop solution for engineering students aspiring to crack this most prestigious engineering exam. The book includes previous years' solved conventional questions segregated subject-wise along with detailed explanation. This book will also help ESE aspirants get an idea about the pattern and weightage of questions asked in ESE.

IES Master feels immense pride in bringing out this book with utmost care to build upon the exam preparedness of a student up to the UPSC standards. The credit for flawless preparation of this book goes to the entire team of IES Master Publication. Teachers, students, and professional engineers are welcome to share their suggestions to make this book more valuable.

1. STRENGTH OF MATERIALS
2. STRUCTURE ANALYSIS

234-469
3. STRUCTURAL DYNAMICS

470-476
4. STEEL STRUCTURE

477-635
5. RCC AND PRESTRESSED CONCRETE

636-846
6. PERT CPM

847-944
7. BUILDING MATERIAL

945-1065

CHAPTER

STRENGTH OF MATERIALS

1

Q-1: \quad A cylindrical piece of steel 80 mm dia and 120 mm long is subjected to an axial compressive force of $50,000 \mathrm{~kg}$. Calculate the change in the volume of the piece if bulk modulus $=1.7 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$ and Poisons' ratio = 0.3.
[10 Marks, ESE-1997]

Sol:

Given:

$$
\begin{aligned}
\text { Axial compressive load } & =50,000 \mathrm{~kg} \\
\text { Bulk modulus }(\mathrm{k}) & =1.7 \times 10^{+6} \mathrm{~kg} / \mathrm{cm}^{2} \\
\text { Passion's ratio }(\mu) & =0.3
\end{aligned}
$$

Determine:

We know that

$$
\begin{aligned}
\frac{\Delta V}{V} & =\varepsilon_{V}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z} \\
\varepsilon_{x} & =\frac{\sigma_{x}}{E}-\frac{\mu\left(\sigma_{y}\right)}{E}-\frac{\mu\left(\sigma_{z}\right)}{E} \\
\varepsilon_{y} & =\frac{\sigma_{y}}{E}-\frac{\mu\left(\sigma_{z}\right)}{E}-\frac{\mu\left(\sigma_{x}\right)}{E} \\
\varepsilon_{z} & =\frac{\sigma_{z}}{E}-\frac{\mu\left(\sigma_{x}\right)}{E}-\frac{\mu \sigma_{y}}{E}
\end{aligned}
$$

In our case,

$$
\sigma_{y}=0 ; \sigma_{z}=0
$$

$\sigma_{\mathrm{x}}=\frac{-50000 \mathrm{~kg}}{\frac{\pi}{4}(8)^{2} \mathrm{~cm}^{2}}=-995.2 \mathrm{~kg} / \mathrm{cm}^{2}\{(-\mathrm{ve})$ because its compressive $\}$

$$
\begin{aligned}
& \text { Also, we know, } \\
& E=3 k(1-2 \mu)=3 \times 1.7 \times 10^{6} \times(1-2 \times 0.3) \\
& =2.04 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2} \\
& \Rightarrow \quad \varepsilon_{x}=\frac{\sigma_{x}}{E}=\frac{-995.2}{2.04 \times 10^{6}}=-4.8784 \times 10^{-4} \quad[(-) \text { because comp.] } \\
& \varepsilon_{y}=-\frac{\mu \sigma_{x}}{E}=0.3 \times 4.878 \times 10^{-4}=1.4635 \times 10^{-4} \\
& \varepsilon_{z}=-\frac{\mu \sigma_{x}}{E}=1.4635 \times 10^{-4} \\
& \Rightarrow \quad \varepsilon_{\mathrm{v}}=\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}+\varepsilon_{2}=-1.951 \times 10^{-4}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad \frac{\Delta \mathrm{V}}{\mathrm{~V}} & =-1.951 \times 10^{-4} \\
\Delta \mathrm{~V} & =-1.951 \times 10^{-4} \times \frac{\pi}{4}(8)^{2} \times 12 \mathrm{~cm}^{3}=-0.1176 \mathrm{~cm}^{3}
\end{aligned}
$$

Change in vol. is (-)ve
$\Rightarrow \quad$ There is volume reduction of $0.1176 \mathrm{~cm}^{3}$
Q-2: \quad A steel rod, circular in cross-section, tapers from 30 mm diameter to 15 mm diameter over a length of 600 mm . Find how much its length will increase under a pull of 20 kN if Young's modulus of elasticity $=200 \mathrm{kN} / \mathrm{mm}^{2}$. Derive the formula used.
[15 Marks, ESE-1998]

Sol:

For deriving the expression of elongation for tapered beam, we assume a tapered beam of Length $=L$, Small end Dia $=D_{1}$, Larger end dia $=D_{2}$
$\therefore \quad D_{x}=D_{1}+\left(\frac{D_{2}-D_{1}}{L}\right) x, \quad\left\{\right.$ where D_{x} is Dia at any distance x from smaller end $\}$
i.e., $\quad D_{x}=D_{1}+k x$, where $k=\left(\frac{D_{2}-D_{1}}{L}\right)$

Change in the length of element of length $d x=d(\Delta L)$

$$
\mathrm{d}(\Delta \mathrm{~L})=\frac{\mathrm{Pdx}}{\mathrm{AE}}
$$

So net elongation

$$
\int \mathrm{d}(\Delta \mathrm{~L})=\int_{0}^{L} \frac{P d x}{A E}=\int_{0}^{L} \frac{P d x}{\frac{\pi}{4}\left(D_{1}+k x\right)^{2} E}
$$

$$
\begin{array}{ll}
\Rightarrow & \Delta \mathrm{L}=\int_{0}^{\mathrm{L}} \frac{4 \mathrm{Pdx}}{\pi\left(\mathrm{D}_{1}+\mathrm{kx}\right)^{2} \mathrm{E}}=\frac{4 \mathrm{P}}{\pi \mathrm{E}} \int_{0}^{\mathrm{L}} \frac{\mathrm{dx}}{\left(\mathrm{D}_{1}+\mathrm{kx}\right)^{2}}=\frac{4 \mathrm{P}}{\pi \mathrm{E}}\left[\frac{-1}{\mathrm{k}\left(\mathrm{D}_{1}+\mathrm{kx}\right)}\right]_{0}^{\mathrm{L}} \\
\Rightarrow & \Delta \mathrm{~L}=\frac{4 \mathrm{PL}}{\pi E D_{1} \mathrm{D}_{2}}
\end{array}
$$

Values given, $P=20 \mathrm{kN}=20 \times 10^{3} \mathrm{~N}$

$$
D_{1}=15 \mathrm{~mm}, \quad D_{2}=30 \mathrm{~mm}, \quad L=600 \mathrm{~mm}, \quad E=200 \mathrm{kN} / \mathrm{mm}^{2}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}
$$

\therefore
$\Delta L=\frac{4 \times 20 \times 10^{3} \times 600}{\pi \times 15 \times 30 \times 200 \times 10^{3}}=0.1697 \mathrm{~mm}$

Q-3: Draw the diagram of normal forces, stresses and displacements along the length of the stepped bar $A B C$ shown in figure.

cross-sectional area over $A B=100 \mathrm{~mm}^{2}$; and area over $B C=200 \mathrm{~mm}^{2}$; modulus of elasticity $=200$ $\mathrm{kN} / \mathrm{mm}^{2}$
[10 Marks, ESE-1998]
Sol:

Given:

$$
A_{A B}=100 \mathrm{~mm}^{2}, \quad A_{B C}=200 \mathrm{~mm}^{2}, \quad E=200 \mathrm{kN} / \mathrm{mm}^{2}
$$

Draw
Diagram of normal forces normal stresses \& displacement \rightarrow along the length

- FBD for $A B$ and $B C$,

- Normal force diagram

Normal force diagram will be constant equal to 50 kN (tension)

- Normal stress diagram

$$
\text { Stress, } \begin{aligned}
\sigma_{A B} & =\left(\frac{50 \times 1000}{100}\right)=500 \mathrm{~N} / \mathrm{mm}^{2} \\
\sigma_{B C} & =\frac{50 \times 1000}{200}=250 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

The normal stress diagram have discontinuity at interface as shown below

Normal stress Diagram

- Displacement diagram

We know that displacement, $\delta=\frac{\mathrm{PL}}{\mathrm{AE}}$ or $\frac{\sigma \mathrm{L}}{\mathrm{E}}$
For portion $A B, \sigma=500 \mathrm{~N} / \mathrm{mm}^{2}$ and $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

$$
\therefore \quad \begin{aligned}
\delta & =\left(\frac{500 \times L}{2 \times 10^{5}}\right) \text { meter, where } L \text { is meter } \\
& =\left(\frac{500 \times L \times 1000}{2 \times 10^{5}}\right) \mathrm{mm}, \text { where } L \text { in meter } \\
\delta & =(2.5 \mathrm{~L}) \mathrm{mm}
\end{aligned}
$$

For portion BC, $\sigma=250 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\therefore \quad \delta=\left(\frac{250 \times \mathrm{L} \times 1000}{2 \times 10^{5}}\right)=(1.25 \mathrm{~L}) \mathrm{mm}, \text { where } \mathrm{L} \text { in meter }
$$

So, Displacement curve is as shown below,

Q-4: (a) The given figure shows three metal cubes A, B and C, of side 100 mm in direct contact, resting on a rigid base and confined in the x-coordinate direction between two rigid endplates.

If the upper face of the centre cube (cube B) is subjected to uniform compressive stress of $0.5 \mathrm{kN} / \mathrm{mm}^{2}$, compute for cube B, the following:
(i) The direct stress in the x-direction $\left(\sigma_{A}\right)$.
(ii) The direct strains in the three coordinate directions x, y and z.
(iii) The volumetric strain.

The elastic properties for the three cubes A, B and C are given in figure.
(b) State all assumptions made.

